Chapter 16B: Surface Integrals

The surface S:

Parametrization of the surface S: x = x(u,v) y=yW,v) z=z(u,v)

Vector function of a surface S: r(u,v) = (x(u,v), y(u,v), (1, v))

Mass of a surface S: mass = j I f (x y,z)as = I _[ f (x(u v), y(u,v),z(u, v))lr XT, ]dA

(with density f(x,y,z))

Flux of F through a surface S: @ = ”F -ndS = ”F(x(u, v), y(u,v), z(u, v))- (ru Xr, )dA
N uy



I. What are two ways to get a normal vector to the surface z = f(x,y) at point P?
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III. Find the parametrization r(u,v) (of the surface S)

A. The surface is a function:
Example' 2 ¢ th & lf’- r(u‘v) z r(y"‘w z <x‘ "‘ le*_ ‘ll)

General: z: Huy) — 'Hm-ﬂ 2 <¥.7-'F(xdh>
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B. The surface is a circular cylinder:
Example: X?'-l'\{z:q ?lu) = PlE2) - <300$‘(’: Lsmt, z)
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C. The surface is a sphere:
Example: Xz“‘!z +2°< 16

General: X‘*f*z‘-’a’ — Fluy): 7(4,9) - (awss on b, a:m@mq&, o os p

IV. Find (ru X rv) and
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B. The surface is a circular cylinder (therefore the radius a is fixed):
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C. The surface is a sphere (therefore the radius a is fixed):
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16.6#21. Find the parametric representation for the part of the hyperboloid x* + y* — z* = 1that
lies to the right of the xz-plane.
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16.6 #24. Find the parametric representation for the part of the sphere x> + 3 + z*> =16that lies
between the planes z =-2 and z = 2.
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16.6 #38 Find the area of the part of the plane 2x +5y + z =10 that lies inside the cylinder
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16.6 #42 Find the area of the part of the surface z =1+ 3x +2y” that lies above the triangle with
vertices (0, 0), (0, 1), (2, 1).
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16.6 #44. Find the area of the part of the paraboloid x = y* + z*that lies inside the cylinder
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16.7-1: Evaluate ”de where S is the surface z=x+y?, 0<x<1,0<y<2
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16.7-2: Evaluate ”xzdS where S is the unit sphere x* + y* +z> = 4.
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16.7-1: Evaluate szS where S is the surface whose sides S1 are given by x” + »* =1, whose
S

bottom S2 is the disk x> + y* <1in the plane z = 0, and whose top S3 is the part of the plane
z =1+ x that lies above S2.
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C3: Q204: CH16B LESSON2

FLUX and ”F-dS
S

Flux of F through a positive oriented surface S:
® = [[F-AdS = [[F(x(,v), y@,v), 2, )-(x, xr, )d4
N uv

Concept of Flux:
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If a surface can be described by z = f(x, y) then the surface is considered positively oriented if

the z-component of the normal vectors is positive. If a surfaces can be describes by
x=f(y,z)or y= f(x,z), then the surface is considered positively oriented if the x component

and y component, respectively, of the respective normal vectors are positive. If a surface is
closed, then a positively oriented surface is one in which the normal vectors all point outward or

away from the surface. For standardization, flux (or flux-our) implies through a positively
oriented surface.
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5 EXAMPLE 1: Find the flux of F = ( W, % z> across the boundary of the solid region E enclosed
by the paraboloid z =3—x” — y* and the plane z=2.
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EXAMPLE 2: Find the flux of F =(z, y, x)across the unit sphere x” +y* +2z> =1. N
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ORGANIZING FLUX (Bridging the Gap Between the Mathematical and Physical Understanding)
By Mr. Michael W. Bermel with supporting details by Mr. Sameer Jain.

In general terms, transport flux is a measure of the rate at which stuff flows through a surface.
Although most authors do not distinguish between “point flux” and “total (or net) flux”, I find it
helpful to understand this difference. Let us define (1) point flux to be the rate, per unit of area,

of stuff flowing through the surface at a point and (2) fotal flux to be the net rate of stuff flowing

through the entire surface. There are several kinds of transport fluxes and each of these types
defines the rate of stuff flowing differently.

Units of Flux
(1) Point Flux (2) Total Flux
Flow Rate per Unit of Area Flow Rate across the total
Quantity / time / area surface area: Quantity / time_
Volumetric Flux m’ m’ o
2 - T ’ s L é‘-' (ma)<"')
§ F:v S "’ or sunphﬁed 1o (distance/time) S >
= Mass Flux k k;
B ] s/ ms le S (l_tgLs 2
= m
—~ " ive i i
= fodenk i W‘L s V.“_KL" - 1,5;, J or Watts
B -K¥u s or Waltls & s
m’ m* m?

(Other Transport Fluxes include: Momentum, Diffusion, Radiative, Energy, and Particle Flux)
Heat . [K] - “.";(m (V] = K/m
(Hemp wrt distance)
Flux is conceptually defined as @ = _[ j.F -ndS but is notated ® = j IF -dS
S S
7 is the unit vector normal to the surface S. 7= lr"%
I'u X rv

dS is a small (infinite) patch of area. dS =

This equivalence is described here

d = ”F AdS = ”F

F r, xr, )dd = ”F ds

For notational purposes (r, xr, )dA =dS



UNITS of NON — TRANSPORT FLUX

Electric Flux

C 2 (Quantity/area)

Quantity/area = Line Density' =
(charge/ & /area)

Charge has units C (Coulombs)

g, =8.8542x107*C* N~ - m™

It is an accepted standard to use &, ( the

permittivity of free space) in the calculation of
Line Density and, hence, in electric flux.

Note: (Line Density) has units (N/C) which
could be thought of as Force per Charge.

(1) Point Flux (2) Total Flux
Quantity / Area Quantity
Electric Flux N - m? N -m?
(Quantity)

For definition and details of Line Density see the excerpt of the paper written by Mr. Sameer

Jain following this discussion.

! Definition of Line Density developed by Mr. Sameer Jain © 2015



Thoughts on Electromagnetic Flux
Sameer Jain
August 2015

In mechanics, volumetric, mass, and energy flux represent the rate with respect to time at which
a physical quantity is being transported across a surface. Volume, mass, and energy are physical
quantities inherent to all matter.

In electromagnetism, flux is a measure of the number of electromagnetic field lines through a
given area. The vector fields that model electric and magnetic forces is not time dependent.
Therefore, electromagnetic flux does not measure a rate of change.

Physicists utilize electric flux to determine the strength of electric fields. The strength of an
electric field is directly related to the flux measured through surfaces enclosing the source of the
field. The source of an electric field is a charge.

Electricity is based on the fundamental principles that like charges repel and opposite charges
attract. By convention, electric field lines are drawn outward from positive charges and towards
negative charges. These field lines are modeled by mathematic vector fields that are dependent
on the positions of test charges. In contrast, vector fields in mechanics are dependent on time.

PROOF: The density of electric field lines indicates the strength of the electric field.

Definition: The density of electric field lines (line density) is defined as the number of field lines
that cross a surface perpendicular to the lines divided by the area of that respective surface.

We utilize a convention that for every coulomb of charge, we will draw a specific number of
lines. Let us define that specific number of lines to be 8.




As seen 1in the figure, the density of electric field lines decreases in both cases as we move
farther from the charge. Given the same distance away from the central charges, the density of
electric field lines is substantially greater when the source of the electric field has a greater
electric charge.

To create a convenient standard, physicists agree that for every one coulomb of charge, L field
&y

lines will be drawn, where &; is a constant defined as the permittivity of free space. Therefore a

charge ¢ would have f— electric field lines drawn radially outwards.

o

Utilizing the definition stated earlier, a charge g enclosed by a spherical surface (area = 47r”)
would have a line density defined below.

. 4
. . number of field lines = q =
Line Density = = -~ = - = |E|
surface area 4y dweqr

The derived density of electric field lines is identical to the magnitude of the electric field
defined by physicists. The magnitude of the electric field (measured in N/C) is a representation
of the strength of the electric field.

Therefore, the density of electric field lines indicates the strength of the electric field. The
opposite also holds true. The strength (magnitude) of an electric field is equal to the density of
the electric fields generated by the source of the electric field.

The magnitude of the electric field can be defined in two ways:

- The force acting on a coulomb of charge at a given position (IN/C)

- The number of field lines per unit of area
When calculating the electric flux around a charge, unit analysis yields that the SI Units for
electric flux are newton meters squared per coulomb (Nm’C™). However, electric flux is never
understood by these units.



Q204: Chapter 16B: Lesson 3 — The Divergence Theorem

Let E be a region in three dimensions bounded by a closed surface S, and let 72 denote the unit
outer normal vector to S at (x, g z). If F is a vector function that has continuous partial
derivatives on E, then :

[[F-hds = [[[v-Far where € is e D regon ondosed
i T &F

In other words, the flux of F over S equals the triple integral of the divergence of F over E.
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1. Let E be the region bounded by the cylinder x> + y* =4 and the planes z =0 and z=3, and
let S denote the surface of E. If F = <x3 , ,z3> , use the divergence theorem to find HF -1ds .
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2. Let E be the region bounded by the cylinder z = 4 — x>, the plane y +z =5 and the xy — and

xz — planes, and let S be the surface of E. If F = <x3 +sinz,x’y +cosz, eX >, use the

divergence theorem to find I IF nds .
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CHALLENGE. It can be shown that the divergence of every inverse square field is zero. Now
suppose a closed surface S forms the boundary of a region E and the origin O is an interior point

of E. If an inverse square field is given by F = (q /7’ )r , Where q is a constant, r = (x, y,z> , and

‘rl =r, prove the flux of F over S is 47 g regardless of the shape of E.
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N Q204: Chapter 16B: Lesson 4 — Stokes’ Theorem

Introduction:
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Additional Analysis
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1. Let S be the part of the paraboloid z =9 —x* —y* with z >0, and let C be the trace of S on
the xy—plane.]iVerifyiStokes’ Theorem for the vector field F = <32,4x,2 y> .
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2. Evaluate jF ~dr , where F = <— ¥, x, zz> and C is the curve of intersection of the plane
C

y+z =2 and the cylinder x* +y*> =1. (Orient C to be counterclockwise when viewed from

above.)
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